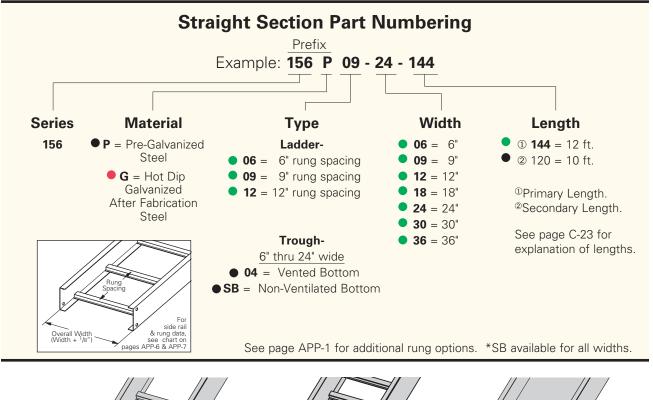
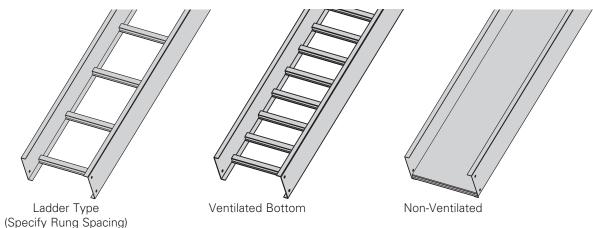

Actual Loading Depth = 3.077"


Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray with rungs spaced on 12" centers. The published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply the published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable tray being installed.

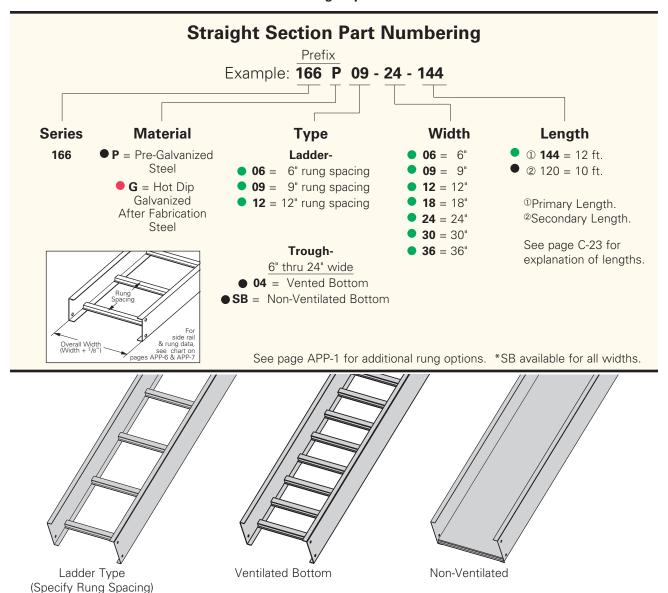

		NEMA, CSA & UL Classifications	Span ft	Load lbs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	.875	NEMA: <mark>12A,</mark> 8C	6	204*	0.0011	Area = 0.510 in^2	1.8	304*	0.019	Area = 3.290 cm^2
148	3.625	CSA: C1-3m	8	115	0.0036	$Sx = 0.480 \text{ in}^3$	2.4	171	0.061	$Sx = 7.870 \text{ cm}^3$
140		UL Cross-Sectional	10	73	0.0087	$Ix = 0.890 in^4$	3.0	109	0.149	$Ix = 37.04 \text{ cm}^4$
	18 gauge	Area: 0.40 in ²	12	51	0.0181		3.7	76	0.309	

*When using 12" rung spacing load capacity is limited to 195 lbs/ft (290.16 kg/m) for 36" tray width. When cable trays are used in continuous spans, the deflection of the cable tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

● Green = Fastest shipped items ● Black = Normal lead-time items ● Red = Normally long lead-time items

Actual Loading Depth = 3.628"

Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray with rungs spaced on 12" centers. Cable trays will support without collapse a 200 lb. (90.7 kg) concentrated load over and above the published loads. The published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply the published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable tray being installed.


B-Line Series SIde Rail Dimensions		NEMA, CSA & UL Classifications	Span ft	Load lbs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	.875	NEMA: 12B, 8C	6	304*	0.0007	Area = 0.690 in ²	1.8	452*	0.011	Area = 4.390 cm ²
156	4.188 3.628	CSA: C1-3m	8	171	0.0021	$Sx = 0.724 \text{ in}^3$	2.4	254	0.036	$Sx = 11.860 \text{ cm}^3$
130		UL Cross-Sectional	10	109	0.0051	$Ix = 1.517 in^4$	3.0	163	0.087	$Ix = 63.140 \text{ cm}^4$
	±_ = 16 gauge	Area: 0.40 in ²	12	76	0.0011		3.7	113	0.181	

*When using 12" rung spacing, load capacity is limited to 234 lbs/ft (348.192 kg/m) for 30" tray width and 195 lbs/ft (290.16 kg/m) for 36" tray width. When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

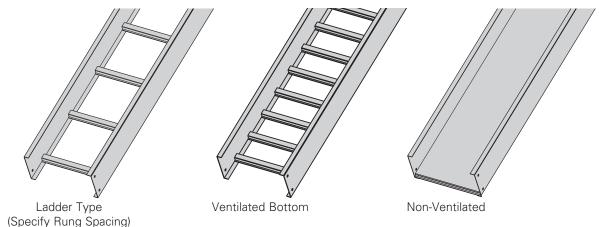
• Green = Fastest shipped items • Black = Normal lead-time items • Red = Normally long lead-time items

All dimensions in parentheses are millimeters unless otherwise specified.

Actual Loading Depth = 4.628"

Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray with rungs spaced on 12" centers. Cable trays will support without collapse a 200 lb. (90.7 kg) concentrated load over and above published loads. The published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply the published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable tray being installed.

B-Line Series SIde Rail Dimensions		NEMA, CSA & UL Classifications	Span ft	Load lbs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	.750	NEMA: 12B, 8C	6	308*	0.0004	Area = 0.770 in^2	1.8	458*	0.007	Area = 4.970 cm^2
166	5.188	CSA: C1-3m	8	173	0.0013	$Sx = 0.930 \text{ in}^3$	2.4	258	0.023	$Sx = 15.240 \text{ cm}^3$
100		UL Cross-Sectional	10	111	0.0032	$Ix = 2.400 \text{ in}^4$	3.0	165	0.055	$Ix = 99.900 \text{ cm}^4$
	16 gauge	Area: 0.70 in ²	12	77	0.0067		3.7	115	0.114	


*When using 12" rung spacing, the load capacity is limited to 234 lbs/ft (348.192 kg/m) for 30" tray width and 195 lbs/ft (290.16 kg/m) for 36" tray width. When trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

● Green = Fastest shipped items
● Black = Normal lead-time items
● Red = Normally long lead-time items

All dimensions in parentheses are millimeters unless otherwise specified.

Actual Loading Depth = 5.628"

Values are based on simple beam tests per NEMA VE 1 on 36" wide cable tray with rungs spaced on 12" centers. Cable trays will support without collapse a 200 lb. (90.7 kg) concentrated load over and above published loads. The published load safety factor is 1.5. To convert 1.5 safety factor to 2.0, multiply published load by 0.75. To obtain mid-span deflection, multiply a load by the deflection multiplier. Cable tray must be supported on spans shorter than or equal to the length of the cable tray being installed.

		NEMA, CSA & UL Classifications	Span ft	Load lbs/ft	Deflection Multiplier	Design Factors for Two Rails	Span meters	Load kg/m	Deflection Multiplier	Design Factors for Two Rails
	.750	NEMA: 12B, 8C	8	194	0.0008	Area = 0.890 in^2	2.4	458*	0.014	Area = 5.740 cm ²
176	6.188	CSA: 137 kg/m 3.7m	10	124	0.0020	$Sx = 1.230 \text{ in}^3$	3.0	258	0.035	$Sx = 20.160 \text{ cm}^3$
170		UL Cross-Sectional	12	86	0.0042	$Ix = 3.800 in^4$	3.7	165	0.072	$Ix = 158.200 \text{ cm}^4$
	16 gauge	Area: 0.70 in ²								

When cable trays are used in continuous spans, the deflection of the tray is reduced by as much as 50%. Design factors: Ix = Moment of Inertia, Sx = Section Modulus.

● Green = Fastest shipped items ■ Black = Normal lead-time items ■ Red = Normally long lead-time items

All dimensions in parentheses are millimeters unless otherwise specified.