Corrugated Metal Hose (Designing an Assembly)

There are many components in a metal hose assembly and care should be taken when selecting each of them. Moreover, the components have their own unique technical limitations so it is important to make sure each of the components is compatible with your application. In much the same way as a "chain is as strong as its weakest link", a metal hose assembly will only perform to the limits of its weakest component.

Once the components have been selected, the quality and skill of the fabricator assembling the components becomes important. The procedures and care used when fabricating assemblies also has a dramatic effect on the assembly's overall performance.

Hose Master has invested a considerable amount of resources researching metal hose fabrication and developing a state-of-the-art fabricating center. In addition, we share the welding technology we have developed with our fabricating distributors. All of this is done to promote quality and consistency in fabricating metal hose assemblies.

In this section, we will discuss the various components that make up a corrugated metal hose assembly, and what information a metal hose fabricator will need in order to make an assembly for your application. If you need assistance determining the information, we have also included an explanation of how to analyze the application and make the appropriate selections.

Specifying a Metal Hose Assembly:

In order to make an assembly, the fabricator will need answers to the following five questions. For more information about any of these questions, or for a list of available options, consult the referenced pages listed next to each topic.

- 1. Hose (type, alloy, and size): page 11
- 2. End fittings (type, alloy, and size for each end): page 29
- 3. Length of the assembly (either overall length or live length): page 34
- 4. Fabrication options: page 35
- 5. Accessories: page 39

If you have the answers to these questions, a metal hose fabricator will be able to make the assembly. If you do not know the answers to all five questions, you will need to obtain them. The next section is designed to help you determine the answers.

Corrugated Metal Hose (Designing an Assembly)

Analyzing an Application:

S.T.A.M.P.E.D.

To properly design a metal hose assembly for a particular application, the following design parameters must be determined. To help remember them, they have been arranged to form the acronym "S.T.A.M.P.E.D."

- 1. Size The diameter of the connections in which the assembly will be installed is needed to provide a proper fit. This information is required.
- Temperature As the temperature to which the assembly is exposed (internally and externally) increases, the strength of the assembly's components decreases. Also, the coldest temperature to which the hose will be exposed can affect the assembly procedure and/or fitting materials. If you do not provide this information it will be assumed that the temperatures are 70°F.
- 3. Application This refers to the configuration in which the assembly is installed. This includes both the dimensions of the assembly as well as the details of any movement that the assembly will experience. This information is necessary to calculate assembly length and required flexibility.
- 4. Media Identify all chemicals to which the assembly will be exposed, both internally and externally. This is important since you must be sure that the assembly's components are chemically compatible with the media going through the hose as well as the environment in which the hose is installed. If no media is given, it will be assumed that both the media and the external environment are compatible with all of the available materials for each component.
- 5. **Pressure** Identify the internal pressure to which the assembly will be exposed. Also, determine if the pressure is constant or if there are cycles or spikes. This information is important to determine if the assembly is strong enough for the application. If no pressure is given it will be assumed that the pressure is low and there are no pressure surges or spikes.
- 6. End Fittings Identify the necessary end fittings. This is required since fittings for the assembly must be chosen to properly fit the mating connections.
- 7. **Dynamics** Identify the velocity at which the media will flow through the assembly. Since corrugated metal hose does not have a smooth interior, rapid media flow can set up a resonant frequency that will cause the hose to vibrate and prematurely fail. If no velocity is given, it will be assumed that the velocity is not fast enough to affect the assembly's performance.

To make gathering this information easier, Hose Master has provided a convenient worksheet to help select components on page 78.

Corrugated Metal Hose (Hose)

Hydroformed Corrugation Process:

Tube Α.

The manufacturing process of corrugated metal hose starts with stainless steel strip that is rolled and the edges welded together to form a thin-walled, gas-tight tube. Hose Master offers:

Rolled to form a tube

Strong, clean, non-oxidized seam weld

Concentrated

Stresses

B. Hose

After the tube has been welded, corrugations are formed into the tube to make it flexible. There are two corrugation profiles, annular and helical.

Annular profile - Independent corrugations, straight and parallel

Helical profile - One continuous corrugation that spirals around the hose.

Corrugations are formed into the tube either mechanically or hydraulically ("Hydroforming").

Hydroforming:

- Enhances flexibility and cycle life.
 - Maintains wall thickness.
 - Reduces concentrated residual stress.
 - Minimizes work hardening.
- Is a clean process.
 - Hydroforming uses water to form the hose while most other processes require lubrication.

Mechanically Formed

Hose Master Inc. is the only American metal hose manufacturer to hydroform metal hose.

11

Corrugated Strip Process (Extraflex/Hydraflex):

In addition to our line of annular, corrugated hose, Hose Master offers two helical hoses specially designed to maximize performance without the drawbacks of traditional, mechanically-formed, helical hose. Rather than welding a tube and mechanically forming the corrugation, these products are made from stainless steel strip that is formed before welding. Because it is not mechanically formed from a tube, it is extremely flexible and does not contain all the residual stresses like traditional mechanically-formed helical hose.

Hydraflex profile

Both Extraflex and Hydraflex are made by pre-forming the stainless steel strip, overlapping the material, and then continuously resistance welding the seam together. While Extraflex is made with one ply of stainless steel, Hydraflex is made with two plies for higher pressure ratings.

Braiding Process:

To give corrugated hose the ability to withstand pressure, stainless steel wire is braided over the hose. Hose may be single braided (one layer of braid) or double braided (two layers of braid) to achieve even greater working pressures. Braided braid is used on large diameter hose.

Designing the proper braid for each type of corrugated hose requires sophisticated engineering to maintain the proper balance between the braid strength and the hose flexibility. Hose Master's braid packages offer several advantages:

- 1. High Percentage Braid Coverage Hose Master has a high percentage of braid coverage yielding better cycle life and protection against damage to the hose.
- 2. Machine Braided Hose Hose Master weaves the braid directly onto the hose ensuring that the braid fits tightly against the hose, preventing potential hose deformation or squirm.

Corrugated metal hose with double braid.

Corrugated Metal Hose (Selecting a Hose)

When selecting a hose, you must consider three variables: pressure carrying capability, flexibility, and chemical compatibility.

 Pressure Carrying Capability – The hose must be strong enough to handle the pressures to which it will be exposed. To determine hose pressure capability, consult the catalog "Maximum Working Pressure" stated for the hose. The Maximum Working Pressure must be reduced for each of the following circumstances:

Temperature – As temperature increases, hose working pressure decreases. After you have determined the proper alloy (see "Chemical Compatibility" below) go to the "Temperature Derating" table on page 67 and match the alloy of the hose and braid with the highest temperature to which they will be exposed (either internally or externally) to obtain the proper derating factors. Then multiply the hose's Maximum Working Pressure by the most limiting temperature derating factor.

Dynamic Pressure – Pulsating, surge, or shock pressures, like those encountered with quick opening or closing valves, can inflict severe damage on a hose. If your application entails pulsating pressures, the working pressure should be derated by 1/2. If your application entails shock pressures, derate the stated working pressure to 1/6 of its value.

Example: 1" Annuflex hose - T321 stainless steel hose and T304 stainless steel braid @ 300°F with shock pressures.

Catalog Maximum Working Pressure = 718 psi. Temperature Derating Factor at 300° F.= 0.86; and the Pressure Derating Factor =1/6. Maximum Application Working Pressure = 718 psi x 0.86 x 1/6 =102.91 psi.

- Flexibility Confirm that the hose's minimum bend radius is less then the bend radius required. Keep in mind that the hose's minimum bend radius will change with pressure. To determine the minimum bend radius, go to the charts beginning on page 68 for the type of hose being used and match the line for the hose's I.D. with your application's pressure requirements. The chart will show you the recommended minimum bend radius. Care should also be taken for applications with vibration. Consult page 71 for recommendations.
- Chemical Compatibility You must choose a material for the hose and braid that is compatible
 with the media being conveyed through the hose as well as the environment in which the hose is
 installed. When determining chemical compatibility it is important to know the temperature and
 concentration of the chemical(s). Although there are many resources to confirm chemical
 compatibility, two of the industry standards that you may use are the National Association of
 Corrosion Engineers (NACE) and the Compass Corrosion Guides. You may also contact our Customer
 Service Department which can check these sources for you.

Flexibility
Working Pressure

Feature: Standard Product

Flexibility
Working Pressure
Feature: Most Pliable

Flexibility	
Working Pressure	
Feature: "Stay-Put"	' Application

Flexibility	
Working Pressure	
Feature: High Pressure)

Flexibility
Working Pressure
Feature: Chemical Resistance

Masterflex is the	most pliable product of the annular family of	
hydroformed hose		6

Formaflex has the "stay-put" characteristics required for stress-free
connections between piping systems and rotary joints or other similar
static applications

Note: Product specifications are subject to change.

Annuflex is the foundation of Hose Master's extensive line of annular hydroformed products. The hydroforming process produces a hose with minimal residual stress, uniform wall thickness throughout the corrugations, and minimal work hardening. This process provides a very flexible, long lasting corrugated metal hose.

Explanation of *Annuflex* Part Numbers:

AF	7		Material Codes:	Braid
	Material	Braid	4 - T321 Stainless Steel	00 - Unbraide
	Code	Code	5 - T316L Stainless Steel	50 - T304 Sin
			7 - T304L Stainless Steel	55 - T304 Do

Braid CodesExample:00 - UnbraidedT321 Sta00 - T304 Single Braidcorrugate05 - T304 Double Braidsingle T3T316 Braid avaiable upon request.

Example: AF4750 = T321 Stainless Steel, annular, corrugated metal hose with a single T304 Stainless Steel Braid.

			Static	Dvnamic	Maximum		
Incido	Number of	Autoido	Min Rond	Min Rond	Working	Ruret	Woight
Diamatar		Diamatar	Mill. Dellu Dedive	MIII. DCIIU	Dresserve	Duist	Weiyiit Dev Feet
	Draius		Kaulus (in)	Kaulus (in)	Pressure	Pressure	
(IN.)	(#)	(11.)	(IN.)	(IN.)	(psi)	(psi)	(IDS.)
-1 / 4	0	0.41	1.0	4.5	90	7000	0.04
1/4	1	0.47	1.0	4.5	1800	/233	U.II 0 19
	0	0.55			70	5100	0.10
3/8	1	0.03	1.2	5.0	1558	6230	0.10
0,0	2	0.77			2336	9345	0.30
	0	0.77			70		0.11
1/2	1	0.83	1.5	5.5	1186	4743	0.22
	2	0.89			1779	7115	0.33
E /0	0	0.96	4.0	7.0	57		0.17
5/8	1	1.02	1.8	7.0	1205	4820	0.33
	2	1.00			1808	1230	0.49
3//	U 1	1.10	21	8.0	43 808	3501	0.19
3/4	2	1.22	2.1	0.0	1347	5387	0.55
	0	1.47			43		0.26
1	1	1.53	2.7	9.0	718	2872	0.50
	2	1.59			1077	4308	0.74
	0	1.75			43		0.29
1 1/4	1	1.83	3.1	10.0	645	2581	0.61
	2	1.91			968	3872	0.93
1 1 /0	0	2.08		44.0	28	0405	0.47
I I/Z	1	2.10	3.9	11.0	53 I 707	2125	0.80
	<u> </u>	2.24			19/	3100	0.50
2	1	2.01	5.1	13 0	449	1797	1 11
-	2	2.77		1010	674	2696	1.63
	0	3.40			14		0.84
2 1/2	1	3.50	6.8	16.0	417	1669	1.64
	2	3.60			626	2504	2.44
•	0	3.88	7.0		14		1.18
3	1	3.98	1.8	18.0	346	1384	2.06
	2	4.08			519	2076	2.94
Λ	U 1	4.90	0.8	22 0	14	110/	1.41
4	2	5.16	5.0	22.0	448	1791	3.53
	0	6.00			14		2.18
5	1	6.12	12.8	28.0	275	1099	3.61
-	2	6.24			412	1649	5.04
_	0	7.01			11		2.69
6	1	7.13	14.8	32.0	210	839	4.44
	2	7.25			315	1259	6.19
8*	U ₁	9.08	20.0	40.0	3 210	050	5.32
-	1	9.44			212	ÜGÖ	/.00
10*	U 1	11.10	25.0	50.0	2	700	0./1 12.65
	0	12 00			0	700	11 50
12*	U 1	10.22	30.0	60.0	۲ 160	640	11.00
Sunnlied with hr	ı aided hraid	19.91			100	040	17.00
Supplied milli bit							

Notes: The minimum bend radius is measured from the centerline of the hose. The minimum bend radius increases with pressure (see chart on page 68). The working pressure decreases with temperature (obtain derating factor on page 67). For rapid pressure fluctuations consult the factory.

MASTERFLEX

AF

Masterflex is manufactured using the same high quality process sed to make Annuflex hose, but the number of corrugations per ot is increased to allow for greater flexibility.

|--|

Explanation of *Masterflex* Part Numbers: Material Codes: **Braid Codes** 00 - Unbraided 4 - T321 Stainless Steel Braid Material 5 - T316L Stainless Steel 50 - T304 Single Braid Code Code 7 - T304L Stainless Steel 55 - T304 Double Braid *T316 Braid avaiable upon request.

Example: AF4550 = T321 Stainless Steel, annular, corrugated metal hose with a single T304 Stainless Steel Braid.

Inside Diamotor	Number of Braids	Outside Diameter	Static Min. Bend Radius	Dynamic Min. Bend Padius	Maximum Working Prossure	Burst Prossure	Weight Per Foot
(in.)	(#)	(in.)	(in.)	in.)	(psi)	(psi)	(lbs.)
1/4	0 1 2	0.42 0.48 0.54	0.9	3.7	90 1800 2700	7233 9100	0.07 0.14 0.21
3/8	0 1 2	0.65 0.71 0.77	1.0	4.0	70 1558 2336	6230 9345	0.20 0.30 0.40
1/2	0 1 2	0.77 0.83 0.89	1.2	4.4	70 1186 1779	4743 7115	0.22 0.33 0.44
5/8	0 1 2	0.96 1.02 1.08	1.4	5.6	57 1205 1808	4820 7230	0.31 0.47 0.63
3/4	0 1 2	1.16 1.22 1.28	1.7	6.4	43 898 1347	3591 5387	0.33 0.51 0.69
1	0 1 2	1.47 1.53 1.63	2.1	7.1	43 718 1077	2872 4308	0.45 0.69 0.93
1 1/4	0 1 2	1.75 1.83 1.91	2.5	7.9	43 645 968	2581 3872	0.56 0.88 1.20
1 1/2	0 1 2	2.08 2.16 2.24	3.1	8.7	28 531 797	2125 3188	0.82 1.20 1.58
2	0 1 2	2.61 2.69 2.77	4.0	10.3	14 449 674	1797 2696	0.95 1.47 1.99
2 1/2	0 1 2	3.40 3.50 3.60	5.4	12.8	14 417 626	1669 2504	1.29 2.09 2.89
3	0 1 2	3.88 3.98 4.08	6.3	14.5	14 346 519	1384 2076	1.84 2.72 3.60
4	0 1 2	4.96 5.06 5.16	7.7	17.4	14 299 448	1194 1791	2.33 3.39 4.45
5	0 1 2	6.00 6.12 6.24	10.0	21.9	14 275 412	1099 1649	3.64 5.07 6.50
6	0 1 2	7.01 7.13 7.25	11.6	25.0	11 210 315	839 1259	4.16 5.91 7.66

Notes: The minimum bend radius is measured from the centerline of the hose. The minimum bend radius increases with pressure (see chart on page 68). The working pressure decreases with temperature (obtain derating factor on page 67). For rapid pressure fluctuations consult the factory.

FORMAFLEX

Formaflex is Hose Master's "stay-put" annular corrugated metal hose. Formaflex is designed to bend and stay in one position, providing a stress-free connection between piping systems.

Explanation of *Formaflex* Part Numbers:

AF	9		Material Codes:	Bra
	Material	Braid	4 - T321 Stainless Steel	00 - Un
	Code	Code	5 - T316L Stainless Steel	50 - T3

Braid Codes 00 - Unbraided 50 - T304 Single Braid 55 - T304 Double Braid Example: AF4950 = T321 Stainless Steel, annular, corrugated metal hose with a single T304 Stainless Steel Braid.

			Static	Maximum		
Inside	Number of	Outside	Min. Bend	Working	Burst	Weight
Diameter	Braids	Diameter	Radius	Pressure	Pressure	Per Foot
<i>(in.)</i>	(#)	(in.)	<i>(in.)</i>	(psi)	(psi)	(lbs.)
1/4	0	0.41	1 በ	90		0.04
.,4	1	0.47	1.0	900	3600	0.11
3/8	0	0.65	12	70		0.10
	1	0.71	1.2	800	3200	0.17
1/2	0	0.77	15	70		0.11
1/2	1	0.83	1.0	665	2660	0.19
5/8	0	0.96	18	57		0.17
	1	1.02	1.0	500	2000	0.26
3/4	0	1.16	21	43		0.19
	1	1.22	L	380	1520	0.29
1	0	1.47	27	43		0.26
-	1	1.53	2.7	355	1420	0.42
1 1/4	0	1.75	3 1	43		0.29
,-	1	1.81	0.1	280	1120	0.47
1 1/2	0	2.08	39	28		0.47
,2	1	2.14	0.0	264	1056	0.71
2	0	2.61	5 1	14		0.59
	1	2.69	0.1	221	884	0.90

Notes: The minimum bend radius is measured from the centerline of the hose.

PRESSUREFLEX

Pressureflex is Hose Master's high-pressure annular corrugated metal hose. With all the advantages of a hydroformed hose, Pressureflex is made from heavy wall T321 Stainless Steel. Pressureflex offers flexibility and dependability when higher pressures are a factor.

Explanation of *Pressureflex* Part Numbers:

AF 87

Braid Code Braid Codes 00 - Unbraided 50 - T304 Single Braid 55 - T304 Double Braid *T316 Braid avaiable upon request.

Example: AF8750 = T321 Stainless Steel, annular, corrugated metal hose with a single T304 Stainless Steel Braid.

			Static	Dynamic	Maximum		
Inside	Number of	<i>Outside</i>	Min. Bend	Min. Bend	Working	Burst	Weight
Diameter	Braids	Diameter	Radius	Radius	Pressure	Pressure	Per Foot
(in.)	(#)	(in.)	(in.)	(in.)	(psi)	(psi)	(lbs.)
	0	1.13			45	u /	0.32
3/4	1	1.21	2.2	8.0	1142	4569	0.58
	2	1.29			1713	6854	0.84
	0	1.44			45		0.38
1	1	1.54	2.8	10.0	929	3717	0.74
	2	1.64			1394	5576	1.11
	0	1.72			45		0.58
11/4	1	1.82	3.1	11.0	766	3065	0.99
	2	1.92			1149	4598	1.40
	0	2.05			28		0.75
1 1/2	1	2.15	3.9	13.0	717	2866	1.29
	2	2.25			1075	4299	1.84
_	0	2.58			28		1.15
2	1	2.70	5.1	15.0	649	2596	1.94
	2	2.82			974	3894	2.72
	0	3.36			28		1.64
2 1/2	1	3.48	6.9	17.0	507	2029	2.66
	2	3.60			761	3044	3.67
	0	3.84			28		1.78
3	1	3.96	7.9	20.0	369	1476	2.85
	2	4.08			554	2214	3.92
	0	4.92			28		2.80
4	1	5.04	9.8	25.0	330	1319	4.27
	2	5.16			495	1979	5.74
5*	0	5.96	10.0	24.0	28		3.03
<u></u>	1	6.13	12.0	34.0	331	1324	5.14
6*	0	6.97	44.0	40.0	23		3.74
0	1	7.22	14.8	40.0	285	1140	6.44
*Supplied with br	aided braid.						

Notes: The minimum bend radius is measured from the centerline of the hose. The minimum bend radius increases with pressure (see chart on page 69). The working pressure decreases with temperature (obtain derating factor on page 67). For rapid pressure fluctuations consult the factory.

ChemKing®

E Α

ChemKing® is Hose Master's chemical resistant annular corrugated metal hose. Hydroformed from a special 276 alloy, ChemKing® provides superior flexibility and excellent corrosion resistance. Used in a variety of industries, ChemKing® is the solution for many of the most severe chemical transfer applications.

T316 Stainless

planation of ChemKing ® F	Part Numbers:	
F 67Braid Code	Braid Codes 00 - Unbraided 40 - T316 Single Braid 44 - T316 Double Braid	Example: AF6740 = 276 annular, corrugated metal hose with a single T316 Stainle Steel Braid.

Inside Diameter (in.)	Number of Braids (#)	Outside Diameter (in.)	<i>Static Min. Bend Radius (in.)</i>	Dynamic Min. Bend Radius (in.)	Maximum Working Pressure (psi)	Burst Pressure (psi)	Weight Per Foot (lbs.)
4.10	0	0.77			70		0.11
1/2	1	0.83	1.5	5.5	1186	4743	0.22
	2	0.89			1779	7115	0.33
	0	1.16			43		0.19
3/4	1	1.22	2.1	8.0	898	3591	0.37
	2	1.28			1347	5387	0.55
	0	1.47			43		0.26
1	1	1.53	2.7	9.0	718	2872	0.50
	2	1.59			1077	4308	0.74
4.4.6	0	2.08			28		0.47
1 1/2	1	2.16	3.9	11.0	531	2125	0.85
	2	2.24			797	3188	1.23
	0	2.61			14		0.59
2	1	2.69	5.1	13.0	449	1797	1.11
	2	2.77			674	2696	1.63
	0	3.88			14		1.18
3	1	3.98	7.8	18.0	346	1384	2.06
	2	4.08			519	2076	2.94
	0	4.96			14		1.41
4*	1	5.06	9.8	22.0	299	1194	2.47
	2	5.16			448	1791	3.53
	0	6.00			14		2.18
5*	1	6.12	12.8	28.0	275	1099	3.61
	2	6.24			412	1649	5.04
	0	7.01			11		2.69
6*	1	7.13	14.8	32.0	210	839	4.44
	2	7.25			315	1259	6.19
* Consult factor	y for delivery.						

Notes: The minimum bend radius is measured from the centerline of the hose. The minimum bend radius increases with pressure (see chart on page 69). The working pressure decreases with temperature (obtain derating factor on page 67). For rapid pressure fluctuations consult the factory.

Braid is T316 stainless steel. Monel braid is available upon request. When Monel braid is used, stated pressure ratings need to be reduced by 0.75. Part numbers for Monel braid are AF6780 (single braid), and AF6788 (double braid).

Braid Codes

BRONZEFLEX

BF 11

Bronzeflex is Hose Master's heavy-duty corrugated hose designed for use in those applications that specifically require bronze hose.

Example: BF1110 =

COCOO COCATATA
<u>KKKKK</u> UUUUUUU

Explanation of *Bronzeflex* Part Numbers:

Br Co	aid ode		00 - Unbraided 10 - Bronze Sin 11 - Bronze Dou	gle Braid uble Braid	Bronze, annular, corrugated metal hose with a single Bronze Braid.		rugated ngle Bronze
Inside Diameter (in.)	Number of Braids (#)	Outside Diameter (in.)	<i>Static Min. Bend Radius (in.)</i>	Dynamic Min. Bend Radius (in.)	Maximum Working Pressure (psi)	Burst Pressure (psi)	Weight Per Foot (lbs.)
3/8	0 1 2	0.63 0.69 0.75	2.0	6.0	60 704 936	2816 3744	0.18 0.31 0.44
1/2	0 1 2	0.77 0.83 0.89	2.2	7.0	50 566 753	2264 3012	0.23 0.43 0.63
3/4	0 1 2	1.13 1.19 1.26	2.5	8.0	30 468 622	1872 2488	0.47 0.81 1.15
1	0 1 2	1.42 1.50 1.58	3.0	10.0	26 334 444	1336 1776	0.56 0.97 1.38
1 1/4	0 1 2	1.81 1.89 1.97	3.5	12.0	16 306 407	1224 1628	0.79 1.34 1.69
1 1/2	0 1 2	2.13 2.23 2.34	4.0	13.5	15 297 395	1188 1580	1.04 1.74 2.44
2	0 1 2	2.64 2.75 2.85	6.0	17.0	10 210 279	840 1116	1.15 2.41 3.67
2 1/2	0 1 2	3.25 3.37 3.49	8.5	22.0	8 194 258	776 1032	1.99 3.33 4.67
3	0 1 2	3.70 3.85 3.95	12.0	24.0	5 166 221	664 884	2.68 4.16 5.64

Notes: The minimum bend radius is measured from the centerline of the hose. The minimum bend radius increases with pressure (see chart on page 69). The working pressure decreases with temperature (obtain derating factor on page 67). For rapid pressure fluctuations consult the factory.

EXTRAFLEX

Extraflex is Hose Master's spirally-welded corrugated metal hose, specifically designed to maximize flexibility while maintaining good pressure ratings. The helical design facilitates draining and reduces in-line turbulence.

Explanation of *Extraflex* Part Numbers:

EF		0_	
	Material		Braid
	Code		Code

Material Codes: 9 - T321 Stainless Steel

- 3 T316L Stainless Steel
 - TSTOL Stainless Stee

Braid Codes 00 - Unbraided 50 - T304 Single Braid 55 - T304 Double Braid *T316 Braid avaiable upon request. Example: EF9050 = T321 Stainless Steel, annular, corrugated metal hose with a single T304 Stainless Steel Braid.

			Static	Dynamic	Maximum		
Inside	Number of	Outside	Min. Bend	Min. Bend	Working	Burst	Weight
Diameter	Braids	Diameter	Radius	Radius	Pressure	Pressure	Per Foot
(in.)	(#)	(in.)	(in.)	(in.)	(psi)	(psi)	(lbs.)
	0	0.39			71		0.09
1/4	1	0.45	0.4	2.2	1778	7112	0.13
	2	0.51			2489	9956	0.19
	0	0.47			43		0.10
5/16	1	0.53	0.6	2.4	1422	5688	0.18
	2	0.59			1991	7964	0.26
0.10	0	0.55			36		0.11
3/8	1	0.61	U.6	2.8	1138	4552	0.19
	2	0.67			1707	6828	0.28
1 /0	0	0.67			28		0.14
1/2	1	0.73	0.8	3.1	910	3640	0.26
	2	0.79			1422	5688	0.39
E /0	0	0.85			28		0.19
5/8	1	0.91	1.2	3.9	910	3640	0.32
	2	0.96			1422	5688	0.46
2/4	0	1.02			14		0.22
3/4	1	1.08	1.4	5.1	711	2844	0.38
	2	1.18			1138	4552	0.55
4	0	1.22			11		0.26
I	1	1.28	1.8	6.3	569	2276	0.54
	2	1.34			910	3640	0.83
1 1//	0	1.57	2.4	7.0	9		0.45
1 1/4	1	1.65	2.4	1.5	455	1820	U./6
	2	1./3			/11	2844	1.09
1 1/2	U	1.89			7	4 4 9 4	0.65
1 1/2	1	1.97	3.0	9.4	355	1424	1.02
	2	2.05			509	2270	1.40
2	U	2.36	0.5	44.0	6	4400	0.71
L	1	2.44	3.5	11.0	284	1130	1.22
	۷	2.02			400	1020	1.75

Notes: The minimum bend radius is measured from the centerline of the hose. The minimum bend radius increases with pressure (see chart on page 70). The working pressure decreases with temperature (obtain derating factor on page 67). For rapid pressure fluctuations consult the factory.

HYDRAFLEX

Hydraflex is Hose Master's T316 double-walled spirally-welded corrugated metal hose. Specially designed to maintain extreme pressure and flexibility, Hydraflex is self-draining and generates minimal in-line turbulence.

Explanation o	Hydraflex	Part Numbers
---------------	-----------	--------------

Н	F	3

Braid
Code

Braid Codes
00 - Unbraided
50 - T304 Single Braid
55 - T304 Double Braid
*T316 Braid avaiable upon request.

Example: HF3450 = T316 Stainless Steel, helical, corrugated metal hose with a single T304 Stainless Steel Braid.

Inside Diameter (in.)	Number of Braids (#)	Outside Diameter (in.)	<i>Static Min. Bend Radius (in.)</i>	Dynamic Min. Bend Radius (in.)	Maximum Working Pressure (psi)	Burst Pressure (psi)	Weight Per Foot (lbs.)
1/4	1 2	0.52 0.62	1.1	5.0	4600 5800	18400 23200	0.21 0.32
5/16	1 2	0.62 0.74	1.2	5.1	4000 4800	16000 19200	0.29 0.45
3/8	1 2	0.70 0.82	1.4	5.5	3800 4000	15200 16000	0.36 0.57
1/2	1 2	0.82 0.94	1.6	5.7	2600 3700	10400 14800	0.43 0.69
5/8	1 2	0.97 1.09	2.2	6.1	2400 2700	9600 10800	0.51 0.82
3/4	1 2	1.19 1.31	2.8	6.5	2000 2200	8000 8800	0.64 1.03
1	1 2	1.39 1.51	3.5	7.9	1500 2000	6000 8000	0.78 1.25
1 1/4	1 2	1.75 1.87	4.1	9.4	1100 1600	4400 6400	1.15 1.70
1 1/2	1 2	2.07 2.19	5.1	12.2	1000 1500	4000 6000	1.45 2.16
2	1 2	2.55 2.67	6.7	14.6	750 1100	3000 4400	1.97 2.83

Notes: The minimum bend radius is measured from the centerline of the hose. The minimum bend radius increases with pressure (see chart on page 70). The working pressure decreases with temperature (obtain derating factor on page 67). For rapid pressure fluctuations consult the factory.

